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Abstract Thomas Young was a prolific scholar who made many contributions to science, medicine and the
humanities. Here, his writings on fluid mechanics are reviewed. The best known of these are on tides and on surface
tension; but he did much else besides. These include his wide-ranging lectures to the Royal Institution, his rather
eccentric reworking of Book 1 of Laplace’s Mécanique céleste, and papers on pneumatics and hydraulics. Among
the latter are perhaps the first observation of transition to turbulence in jets of air; an empirical formula for the
resistance of hydraulic flow in pipes, suggested by his own experiments with thin tubes; and probably the first, but
incomplete, attempt at a theory of the hydraulic jump or bore. All of this work is characterised by sound physical
insight but mathematical limitations.
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1 Introduction

Thomas Young (1773–1829) is rightly hailed as one of Britain’s great polymaths, his achievements recently cele-
brated in Andrew Robinson’s best-selling biography The Last Man Who Knew Everything [1]. Young was a child
prodigy with an indefatigable appetite for learning foreign languages, both ancient and modern, and for studying
and conducting experiments on what was then called “natural philosophy”. As a Quaker, he did not attend Angli-
can-dominated Oxford or Cambridge universities, but instead chose to study medicine in London and Edinburgh,
Britain’s major centres for that subject. According to his good friend and biographer, Hudson Gurney: “In the
autumn of 1794 he went to Edinburgh, and there attended the [medical] lectures of Doctors Black, Munro, and
Gregory. He pursued every branch of study in that university with his accustomed intensity, but made the physical
sciences more peculiarly the objects of his research” [2, p. 16]. Gurney’s work was partly based on an unpublished
autobiography by Young. His pursuit of the physical sciences would have brought Young into contact with John
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Playfair, John Robison and Dugald Stewart, Edinburgh’s influential professors of mathematics, natural philosophy
and moral philosophy. Young’s scholarly accomplishments were soon recognised and he was readily accepted
socially by the Edinburgh professoriate, Andrew Dalzel, the professor of Greek, becoming a particular friend. After
a year in Edinburgh, Young continued his education in Göttingen (where he found the professors less welcoming)
and elsewhere on the continent [1, Chap. 3].

To enhance his medical reputation in England, he wished to become a Fellow of the Royal College of Physicians;
but they operated an efficient closed shop, restricting their Fellowships to graduates of Oxford and Cambridge.
Accordingly, having by then abandoned his strict Quaker views, Young proceeded to Cambridge to take an M.D.
degree, though this was then a qualification of low repute. From 1804, he ran a private medical practice at Worthing,
near Brighton, and this was augmented in 1811 by his appointment to a London hospital. He published several
medical texts, but his medical activities were just one part of his prolific output.

Young is nowadays best remembered for his contributions to the wave theory of light, particularly interference
and diffraction; his work on elasticity and bending of beams, commemorated in “Young’s modulus”; his explanation
of the mechanism of accommodation of the eye and his theory of colour vision; and for his pioneering work on
deciphering the demotic and hieroglyphic scripts of ancient Egypt, as represented on the famous Rosetta stone in
the British Museum (and later completed by J.-F. Champollion). His extensive writings on mechanical oscillators
and on fluid dynamics are less well known, for in these he made few original advances. But, in his own day, these
writings helped to inform both the general public and a rising generation of British researchers.

From August 1801 until June 1803, Young held his only academic post, as professor of natural philosophy at
the recently founded Royal Institution in London. Thereafter, he devoted himself to his medical practice and to his
private researches and prolific writings on a wide range of subjects. He was elected a fellow of the Royal Society of
London in 1794, aged just twenty-one and having published a single paper, “Observations on Vision”, read to the
Royal Society in 1793 by his relative and mentor Richard Brocklesby; see [1, pp. 38–39]. From 1804 to 1829, Young
served as Foreign Secretary of the Royal Society, corresponding with several overseas scientists. To the Society, he
delivered the prestigious Bakerian lectures in 1801, 1802 and 1804 (on optics and the eye) and the Croonian lecture
in 1808 (on the heart and arteries).1 He finally became a fellow of the Royal College of Physicians in 1809, and
in 1827 he was elected a foreign associate of the National Institute of France in recognition of his work on optics.
But full appreciation of Young’s achievements did not come in his lifetime. Even now, he has been criticised for
pursuing interests that were too wide, lacking “the discipline and insight necessary to pursue topics in great depth”
[4]. But among his many admirers was Lord Rayleigh, who lectured on Young’s scientific writings at a centenary
meeting of the Royal Institution in 1899. Though Rayleigh admitted that these were often too concise and obscure,
he concluded that “Young occupied a very high place in the estimation of men of science—higher, indeed, now
than at the time when he did his work”; see [1, pp. 6–7].

A lengthy biography of Young (Fig. 1) was published in 1855 by Peacock [5], and other biographies are by
Gurney [2], Oldham [6], Wood [7], and Robinson [1]. Many but by no means all of Young’s papers were repub-
lished in the three-volume Miscellaneous Works of the Late Thomas Young, M.D. F.R.S., edited by George Peacock
and John Leitch [8]. In this article, quotations are usually identified by referring to this collection, rather than to
the sometimes hard-to-find originals. Similarly, quotations from his lectures given at the Royal Institution [9], first
published in 1807, are identified by pages in the 1845 second edition [10] edited by Philip Kelland.

2 Young’s lectures

2.1 Overview

During each of his two years at the Royal Institution, for a salary of £300 a year, Young gave three courses of
lectures and helped with other administrative duties. He gave fifty lectures during the 1802 session, and probably

1 For more on Young’s activities at the Royal Society see [3].

123



Thomas Young on fluid mechanics 97

Fig. 1 Engraved portrait of
Thomas Young, from an oil
painting by Sir Thomas
Lawrence; reproduced from
frontispiece of Peacock [5]

sixty in the following year. For these, he published a lengthy Syllabus indicating the scope of his intended courses
[11]. (The St Andrews University Library copy of the Syllabus, previously owned by the physicist James D. Forbes,
carries the flyleaf inscription: “This work contains the first publication of the Principle of the Interference of Light.
Art. 376”.) The Institution’s lectures were open to women as well as men, and they attracted a fashionable clientèle.
In Young’s own view, “the Royal Institution may in some degree supply the place of a subordinate university,
to those whose sex or situation in life has denied them the advantage of an academical education in the national
seminaries of learning” [10, p. 2]. However, it seems that his lectures were not popular, since the audience’s expec-
tations “tended more to entertainment than to expositions filled with Young’s professed “elegance” and “reason””
[1, p. 92]. Young himself later admitted that his style had been “more adapted for the study of a man of sci-
ence than for the amusement of a lady of fashion” (from Young’s autobiographical sketch, quoted
in [1, p. 86]).

Young’s early resignation was in part the result of his unpopularity as a lecturer, which contrasted with the
acclaim of Humphry Davy’s lectures on chemistry. But it also reflected his disenchantment with the administra-
tion of the Royal Institution, which, following the departure of its founder Count Rumford, sought to attract the
fashionable aristocracy at the expense of the “lower classes” eager to receive an education. Nevertheless, Young
prepared the texts of sixty lectures for publication, and these appeared in 1807 as A Course of Lectures on Natural
Philosophy and the Mechanical Arts [9]. Young never received the promised (and then large) sum of £1000 for
these Lectures, “in consequence of the bankruptcy of the publisher” [4, p. 189]. A later edition [10] was edited
by Philip Kelland, and a facsimile of the original edition, with an introduction by Nicholas J. Wade, appeared in
2002. An excellent survey of Young’s lectures, and of the early history of the Royal Institution, is given by Geoffrey
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Cantor [12], who has carefully examined Young’s twenty surviving manuscript notebooks preserved in University
College, London.

Young’s Lectures are remarkably wide-ranging and informative, displaying his wide knowledge and keen phys-
ical insight. But Young’s biographer, George Peacock (an eminent Cambridge mathematician and Dean of Ely
cathedral), was damning: “If, indeed, these lectures were delivered nearly in the form in which they were printed,
they must have been generally unintelligible even to well-prepared students” [5, p. 136]. Certainly, for a modern
mathematically trained reader they are immensely frustrating: no doubt in deference to his audience at the Royal
Institution, but also in line with his own inclinations, Young used no mathematical or symbolical notation whatso-
ever, preferring instead to describe everything in words only. As a result, he had to resort to cumbersome physical
descriptions of relationships between quantities that can be readily and more clearly expressed by simple algebra.
One suspects that his audience would have made no more of his circumlocutions than they would if he had used
mathematics.

In fact, Young had intended to lecture also on mathematical topics. In his Syllabus [11], he proposed not only the
three parts on Mechanics, Hydrodynamics and Physics that he delivered, but also a (separately paginated) thirty-
two-page fourth part on “Mathematical Elements” that was never given. The lectures of the first three parts comprise
the first volume of [9]; the second volume begins with his articles on mathematics, and these are followed by an
extensive bibliography that is a testament to Young’s wide reading, reprints (some revised) of several of his earlier
papers, and an index. In his later edition of Young’s Lectures [10], Philip Kelland silently omits the mathematical
articles and the reprints, and incorporates an updated bibliography into the first volume.

George Peacock assessed the mathematical writings as follows:

The mathematical Elements of Natural Philosophy … were partly reprinted from the Syllabus of his lectures,
which appeared in 1802. They would appear to have been regarded with no small degree of favour by their
author … but any student who followed Dr. Young’s advice [on how to read them]… would most probably
have risen from his labour without retaining a single definite conception either of the propositions or their
proofs [5, pp. 190–192].

Part 1 of the Lectures is devoted to twenty lectures on mechanics. This begins with nine lectures on the standard
topics of equilibrium and motion of masses under applied forces, collisions, levers and pulleys. These are followed
by the less-expected topics “Drawing, Writing, and Measuring”, “Modelling, Perspective, Engraving, and Printing”,
and “Passive Strength and Friction”, the last including flexure and stiffness of beams where “Young’s modulus”
was first introduced. More “Mechanical Arts” follow in the remaining lectures, giving a comprehensive overview of
such matters as architecture, carpentry, flexible fibres, timekeepers, raising of weights by cranes and other machines,
and “Changing the Forms of Bodies” by mills, presses, lathes, glassblowing and so forth. The concluding lecture
sketches the entire history of mechanics.

Part 2, entitled “Hydrodynamics”, consists of another twenty lectures. The first ten encompass hydrostatics,
hydraulics, fluid friction in rivers and pipes, hydraulic pressure, hydraulic and pneumatic instruments and machines,
and the history of hydraulics and pneumatics. These are followed by four lectures on sound, harmonics and musical
instruments. The final six lectures are on optics and optical instruments, vision, light and colours, and the history
of optics. Though it nowadays seems odd to find optics included under the title “Hydrodynamics”, it should be
remembered that Young regarded light as due to vibrations of an imponderable fluid aether, and so broadly equiv-
alent to sound in air. Young’s early support for the wave theory of light brought him into conflict with those of the
British scientific establishment who adhered to Newton’s corpuscular theory; and his vindication won him a high
place in the history of optics.

Part 3, “Physics”, begins with eight lectures on astronomy and gravitation, finishing with “The Tides” and the
history of astronomy. These are followed by twelve lectures on the properties of matter (including cohesion and
capillarity), heat, electricity, magnetism, meteorology, natural history and the “history of terrestrial physics”.

To give the flavour, a few portions of his account of mechanics and hydrodynamics are here presented. The
subject of cohesion and capillarity is discussed in a later section.

123



Thomas Young on fluid mechanics 99

2.2 Motion of pendulums

In lecture V, Young describes the isochronous oscillations of a cycloidal pendulum and relates this to small oscil-
lations of a simple pendulum. However, to avoid using formulae, he has to resort to physical language that now
seems contorted. Thus, citing Huygens’ Horologium oscillatorum of 1673, he writes that “The absolute time of the
descent or ascent of a pendulum, in a cycloid, is to the time in which any heavy body would fall through one half
of the length of the thread, as half the circumference of a circle is to its diameter. It is, therefore, nearly equal to the
time required for the descent of a body through 5/4 of the length of the thread” [10, p. 35]. In present-day notation,
this result is just the familiar

τ

4
= π

2

(
l

g

)1/2

where τ is the period of one complete oscillation, g is the acceleration due to gravity, and l is the length of the
thread. (His later approximation is equivalent to taking π2 = 10.)

2.3 Discharge from a pipe

In lecture XXIII, Young gives a lengthy and rather turgid account of hydraulic flow in pipes and siphons. Citing
Daniel Bernoulli’s Hydrodynamica of 1738 and after some physical discussion, Young states that the velocity of
efflux from a pipe under gravity, when connected to a reservoir, is the same as “the velocity of a body falling from
the whole height of the surface of the reservoir” above the pipe’s orifice [10, p. 211]. This is just “Torricelli’s Law”,
u = (2gh)1/2 where u is the velocity, h the height and g acceleration due to gravity, but Young neither says so
nor states this formula. However, he does go on to say that this is often an unsatisfactory approximation, due to
contraction of the stream at the efflux (a fact already known to Isaac Newton).

Instead of giving the above simple formula, Young writes that:

The velocity may be found … by multiplying the square root of the height of the reservoir, expressed in feet,
by 8, or more correctly, by 8 1

44 ; thus, if the height be 4 feet, the velocity will be 16 feet in a second; if the
height be 9 feet, the velocity will be 24 …, if the height were 14 feet, the velocity would be 30 feet in a second,
and a circular orifice an inch in diameter would discharge exactly an ale gallon in a second [10, p. 211].

His factor of 8 corresponds to taking g = 32 feet/s2. Original units are retained in this paper: for future reference,
a British imperial foot is 30.48 cm., a British inch is 2.540 cm, a French inch or pouce is 2.707 cm. He notes that
this result “appears at first sight extremely paradoxical” since the water discharged from a vertical pipe 16 feet
long acquires a velocity of 32 feet per second. Therefore, each particle of fluid traversing the full length of the
pipe experiences gravity for just half a second; but in common circumstances the action of gravity would require a
whole second in order to produce this velocity. He tries to explain this supposed paradox by asserting that, near the
entrance to the tube, “it may be shown that the portion of the accelerating force … is twice as great as the pressure
of the fluid on a part of the vessel equal in extent to the orifice” [10, pp. 215–216]. But his argument is unclear.

The next lecture XXIV, “On the friction of fluids”, concerns the additional frictional drag forces that operate
in pipes and rivers. He begins by praising the work of Pierre Du Buat [13] from 1786, before which “it was
almost impossible to apply any part of our theoretical knowledge of hydraulics to practical purposes” [10, p. 222].
Discussion of more of Young’s work on hydraulics and pneumatics is deferred to a later section.

2.4 Surface waves

In the same Lecture XXIII, Young rightly observes that:

it does not appear that the laws of the vibrations of fluids in pipes will at all serve to elucidate the phenomena
of waves. Sir Isaac Newton has supposed that each wave may be compared with the fluid oscillating in a
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bent pipe; but the analogy is by far too distant… The motions of waves have been investigated in a new and
improved manner by Mr. Lagrange [in his Méchanique analitique].

He then claims to “have given a concise demonstration of a theorem similar to his [Lagrange’s], but perhaps still
more general and explicit.” He asserts that these demonstrations, subject to appropriate conditions of incompress-
ibility and absence of friction, show that “any small impulse communicated to a fluid, would be transmitted every
way along its surface with a velocity equal to that which a heavy body would acquire in falling through half the
depth of the fluid” [10, p. 213].

This velocity, of course, is just Lagrange’s c = (gh)1/2 where h is the depth: less by a factor of 2−1/2 than the
velocity given by Torricelli’s Law of efflux. This is the correct result for all periodic waves of small amplitude
in water that is shallow compared with the wavelength, but Young rightly remarks that it overestimates the true
velocity of waves with lengths short compared to the depth. Young also remarks that, from his observations, “where
the elevation or depression of the surface is considerably extensive in proportion to the depth, the velocity… [is]
frequently deficient one eighth or one tenth only of the whole”. This comment about the propagation velocity of
nonlinear waves in shallow water is one of the earliest known. Unfortunately, it is not generally true: for example,
as found by Scott Russell in 1844 and much later confirmed theoretically, solitary waves of elevation travel with a
velocity greater, rather than less, than c (and weakly nonlinear periodic gravity waves in deep water also propagate
with a velocity slightly greater than that of infinitesimal waves).2 But Young’s observations of waves in a small
tank were probably influenced by surface tension. (It is now known that this plays a dual role: the velocity of linear
waves is increased, but waves of finite amplitude usually have velocities less than this linear value: see e.g. Craik
[19, pp. 178–179].)

Young then gives a correct account, entirely in words, of the propagation of an initially stationary disturbance
along a narrow canal: “the original elevations and depressions, extending their influence in both directions, will
produce effects only half as great on each side, and these effects will then be continued until they are destroyed by
resistances of various kinds.” And he considers the effect of “two equal and similar series of waves” propagating in
opposite directions, noting that this is identical to that of reflection at a steep wall or bank. Similarly, waves “on a
broad surface” usually constitute a number of concentric circles, and reflection at a barrier is such that the reflected
waves “appear to diverge … from a centre beyond the surface … and to be subject to all those laws, which are more
commonly noticed in the phenomena of reflected light” [10, pp. 218–219]: see Fig. 2 (No. 264). Here, he shows a
clear physical understanding of what was later exploited mathematically as the “method of images”.

He then describes his apparatus consisting of a shallow glass-bottomed vessel with sloping sides that “avoid the
confusion … from continued reflections”. Waves excited by a rod or wire “may be easily observed, by placing a
light under the vessel, so that their shadows may fall on a white surface, extending in an inclined position above”
[10, pp. 219–220]: see Fig. 2 (No. 265). He is known to have demonstrated this in his lectures during 1802–1803,
and he certainly used it to clarify his ideas about the propagation of light waves. (Does anyone know of an earlier
account of such an apparatus?) It is also known that the same apparatus was later used by Michael Faraday in his
Royal Institution lectures; see [7, p. 138]. Young used his apparatus to demonstrate diffraction when waves pass
through a narrow aperture, and their interference when wavetrains meet. The former demonstration (Fig. 2, No.
266) is the hydrodynamic equivalent of Young’s famous slit experiment in optics. The latter demonstration with
intersecting circular wavetrains reveals hyperbolic curves where the water remains smooth, with strongly agitated
motion in between (Fig. 2, No. 267).

Summing up, Young considered that:

The subject of waves is of less immediate importance for any practical application than some other parts of
hydraulics; but besides that it is intimately connected with the phenomena of the tides, it affords an elegant
employment for speculative investigation, and furnishes us with a sensible and undeniable evidence of the
truth of some facts, which are capable of being applied to the explanation of some of the most interesting
phenomena of acustics [sic] and optics.

2 On the relevant theory, see for example papers by Peregrine [14,15], Drazin and Johnson [16] and Craik [17,18].
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102 A. D. D. Craik

He then concludes the lecture by drawing attention to the analogy between surface waves and the motion of
liquid in elastic pipes and tubes. In blood vessels, “the pulse moves on with great rapidity” due to elasticity of the
vessels and the temporary action of the “muscular coats of the arteries; … while the whole mass of the arterial
blood continues … to advance with a much smaller velocity; like the slow stream of a river, on the surface of which
undulations are continually propelled …” [10, p. 220]. In his 1808 Croonian lecture to the Royal Society, Young
emphasised that “the muscular powers of the arteries have very little effect in propelling the blood” (quoted in
[7, pp. 91–92]).

3 Young’s account of Laplace’s Mécanique céleste

In 1821, Thomas Young published, anonymously, his Elementary Illustrations of the Celestial Mechanics of Laplace.
Part the first, comprehending the first book [20]. Laplace’s Mécanique céleste [21] appeared intermittently in five
volumes during 1799–1825 and had a profound effect on applied mathematics. Employing mathematical analysis
based on partial differential equations, Laplace went far beyond Newton’s Principia in revealing the “mechanism
of the heavens”. Topics studied by him include planetary motion with perturbations and secular inequalities; the
gravitational attraction of ellipsoids and the form of self-gravitating and rotating homogeneous bodies; ocean tides
and atmospheric oscillations; precession and nutation of the Earth, libration of the Moon, and the motion of Sat-
urn’s rings; the theory of motion of each of the planets and their satellites; atmospheric refraction; and capillary
attraction.

In 1805 and 1808, respectively, John Toplis and John Playfair publicly bemoaned the inferiority of British math-
ematicians, rightly asserting that few had mastered the new analysis to the extent of being able to read the works of
Laplace, or even those of earlier writers such as Euler and d’Alembert; see e.g. [22]. Even earlier, in a 1798 letter
to his friend Andrew Dalzel, Young himself wrote that: “I am ashamed to find how much the foreign mathemati-
cians for these fifty years have surpassed the English in the higher branches of the sciences. Euler, Bernouilli [sic]
and d’Alembert have given solutions to problems which have scarcely occurred to us in this country” (quoted in
[7, p. 65]). One of the few British mathematicians to engage successfully with contemporary continental mathe-
matics was James Ivory, who had studied first at St Andrews and then with Playfair in Edinburgh. Ivory’s work
on the gravitational attraction of ellipsoidal solid bodies, and his calculation of the “figure of the Earth” due to
self-gravitation and rotation, were hailed for improving on some aspects of Laplace’s treatment; see [23,24].

John Toplis, educated at Cambridge but by then headmaster of a school in Nottingham, tried to popularise the
works of Laplace by preparing an English translation, with explanatory notes, of the first book of the Mécanique
céleste [25]. A separate translation of the same first book, by Henry Harte of Dublin, appeared some years later
[26], just after Young’s Elementary Illustrations. Though Toplis and Young deal only with Laplace’s introductory
“first book” (and Harte later translated the second book), the complete work ran to fifteen “books” published in
five volumes. A full English translation, with copious explanatory notes, of the first four volumes of Laplace’s
Mécanique céleste was eventually given by the American, Nathaniel Bowditch [27]. Modern scholarly assessments
of Laplace’s achievements are given by Grattan-Guinness [28] and Gillispie [29].

Laplace’s “first book” describes the laws of mechanics, the motion of point masses, the equilibrium of systems
of masses and of fluids, the motion of bodies composed of connected point masses, the motion of solid bodies, and
the movement of fluids. All this is necessary preparation for his subsequent celestial applications and also serves
as an introductory text on mechanics of solids and fluids, written in modern analytical notation. It was doubtless
this latter aspect that attracted Toplis, Harte and Young. But Young’s Elementary Illustrations is far from being a
straight translation and commentary. Rather, he undertakes some major reworking of the material that strikes the
modern reader as decidedly odd.

Young’s own mathematical skills were of a traditional sort: he was adept in Euclidean geometry and fairly pro-
ficient in algebra and in calculus. When combined with his sound physical intuition, he was able to deploy this
limited mathematical range to good effect in his researches. But his choosing to publish a work on Laplace’s highly
analytical treatise now seems surprising. Perhaps he viewed it as a challenge to his considerable intellect to confront
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Thomas Young on fluid mechanics 103

this major scientific work. He wrote indefatigably and doubtless found that writing was a good way of learning.
Some clues are to be found in Young’s Preface.

Regarding his translation, he “flatters himself … that he has rendered it perfectly intelligible to any person, who is
conversant with the English mathematicians of the old school only, and that his book will serve as a connecting link
between the geometrical and algebraical modes of representation.” Finding some parts of the “elementary doctrines
of motion” and some other subjects to be “more natural and satisfactory” when expressed in more familiar form,
Young “felt himself compelled to substitute for Mr. Laplace’s introductory investigations” some of his own former
publications on mechanics. Approximately the first one hundred pages are filled in this way, incorporating a revised
version of the Mathematical Elements from his Syllabus and Lectures. Elsewhere, Young adds many passages
(indicated by square brackets) to his translation. He also inserts many diagrams although Laplace, on ideological
grounds, ensured that his work contained none. As a final liberty, in his chapter VIII entitled “Of the Motion of
Fluids”, he replaces the first part of Laplace’s text by a lengthy seven-page quotation from S.D. Poisson’s Traité
de Mécanique [30], “which is nearly similar, but reduced to more elementary principles, and in some instances
more clearly expressed” [20, p. 279]. This section derives Euler’s equations for nonviscous flow “by the principle
of Dalembert”, and without mentioning Euler’s name (a usual omission in French works of this time).

Towards the end of his Book I, Laplace derives the equations governing small oscillations of a fluid extending
in a thin layer over an entire rotating “spheroid” (the Earth’s surface) and subject to external forces due to the
gravitational attraction of external bodies (the Moon and Sun). These are the now-famous Laplace tidal equations
applied to oceans and atmospheres of unlimited extent. It is noteworthy that they incorporate terms deriving from the
“Coriolis force”.3 But these equations were “left hanging” in Book I, and Laplace did not return to them until Book
IV, where he derived their solutions. For a good account of Laplace’s theory of tides, and its reception, see [31].

Young chose to continue the story in his own way. Complaining that Laplace’s “refined investigation” was
“unnecessarily general”, he confines attention to water waves in a narrow canal [20, p. 318]. By rather dubious
arguments, he shows that the waves’ surface profile must advance with horizontal velocity

√
gy where y is the

water depth (see above). This result, true for long waves of small amplitude in shallow water, was known to Young
from Lagrange’s Méchanique analitique [32] and from his earlier paper [33]. In a “Scholium” [20, p. 322], Young
remarks that: “each particle of the surface will describe an oval figure, which it will be simplest to suppose an
ellipsis; the motion in the upper part being direct … and in the lower part retrograde.” He does not seem to have
had only sinusoidal waves in mind; nevertheless, this is one of the first published statements that particle paths may
be ellipses. The first derivation that the particle paths of sinusoidal waves are ellipses in water of arbitrary depth
is usually credited to Airy’s Tides and Waves of 1841 [34], though it easily follows from results given in 1776
by Laplace; see [17, p. 12]. Young further argues that diverging circular waves must propagate outwards with this
same speed, while their amplitude decreases as the [inverse] square-root of distance from the centre. Then he goes
on to discuss the interference of [linear] superpositions of waves and to explore an analogy with waves in elastic
“chords” [20, pp. 322–327]. In an earlier comment [20, pp. 306–307], Young had alluded to the elasticity of water
as the means of transmitting to great depths any changes of pressure at the surface, rightly disputing on physical
grounds the instantaneous transmission required with an incompressible fluid model.

Young’s Elementary Illustrations ends with two Appendices, one on “The Cohesion of Fluids” and the other on
“Interpolation and Extermination”. The former is discussed below in the section on surface tension. He describes
the latter as an “application of Taylor’s theorem, which may be found of considerable utility in computing the forms
of the surfaces of fluids …” (Preface to [20, p. iv]). This is just a brief account of the theory of finite differences,
expounded many times before.

The Elementary Illustrations is a curious work, described by Young as a “Mosaic”, incorporating much of his
own work and some of Poisson’s, and far from true to the spirit of Laplace’s original. The many diagrams, the
geometrical treatment of mechanics, and the organization of the whole into “Theorems”, “Corollaries”, “Lemmas”
and “Scholia” are alien to Laplace’s text and look back to an earlier age. Young’s many insightful remarks derive
from sound physical intuition rather than sophisticated mathematical analysis.

3 Gaspard Coriolis, born in 1792, was just seven years old when Laplace’s first volume appeared.
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4 Young on pneumatics and hydraulics

While at Cambridge, Young investigated the similarities between sound and light. This work is described in an
early paper read to the Royal Society in 1800 [35].4 It begins with two sections seemingly little-connected with
either sound or light: “Of the quantity of air discharged though an aperture” and “Of the direction and velocity of a
stream of air”. The former concerns air escaping from a small hole or tube inserted in a bladder that is maintained
under constant pressure; Young determined that the quantity of air discharged in a given time is proportional to the
“subduplicate ratio of the pressure” (i.e., its square root). The second section describes the lateral spreading of a jet
of air with distance from its source. He measures this by directing the jet normally onto a thin layer of liquid on a
plate and observing the radius within which the liquid is displaced. Though this nowadays may seem a rather crude
approach, it yielded an important observation:

One circumstance was observed … which it is extremely difficult to explain, and which yet leads to very
important consequences: … When the velocity is as small as possible, the stream proceeds for many inches
without any observable dilatation; it then immediately diverges at a considerable angle into a cone, … and, at
the point of divergency, there is an audible and even visible vibration… When the pressure is increased, the
apex of the cone approaches nearer to the orifice of the tube [8, Vol. 1, pp. 68–69].

This phenomenon is sketched in [8, Fig. 84], where there is a clear representation of small eddies in the cone-
like region; and Young noted a connection with the jet above the flame of a candle. This is perhaps the first clear
description of transition to turbulence, though Young does not use this expression; and it is noteworthy that Young
appreciated its “very important consequences”. Later observations and theoretical studies of this phenomenon by
Le Conte in 1858, Tyndall in 1867, and Rayleigh in 1879 are noted in [36, pp. 208–209].

In 1808, Young published an article entitled “Hydraulic Investigations, subservient to an intended Croonian
Lecture on the Motion of the Blood” in the Philosophical Transactions of the Royal Society of London [37]. There,
he proposed a total resistance law for flow through a uniform pipe or tube, based on the already much-used formula

f = a
l

d
v2 + 2c

l

d
v,

where f is “the height employed in overcoming the friction”, v the velocity of fluid, l is the length and d the
diameter of the pipe, and a and c are functions of d to be determined empirically from measurements. In support of
this, he cites his own experiments as well as those previously published by Du Buat, Couplet, Bossut, and Gerstner.
He also suggests a somewhat similar formula for rivers, with the cross-sectional area of the pipe replaced by that of
the river. Resistance laws with terms proportional to both v and v2 were originally proposed in Newton’s Principia
(Book II, Sect. 3) for projectiles moving in air. This form was adopted for pipe and channel flows in 1786 by Du
Buat [13]. For later applications by Coulomb in 1800 and Prony in 1804 see, for example, [38, Chap. X].

A closer examination reveals something of Young’s methods. His own experiments are cursory, only three in
number, for very narrow tubes with diameters of 1/42 and 1/183 pouces or French inches, a unit chosen to conform
with Du Buat’s. (These diameters are respectively 0.645 and 0.148 mm approximately.) In contrast, Pierre Du Buat’s
two-volume work Principes d’hydraulique… [13] described a great many experiments, mostly new but also the
earlier ones of Couplet, Bossut and Gerstner. Almost all of the data repeated by Young in the table on pages 168–169
of his article are drawn from the corresponding tables on pages 72–76 of [13]. But Young has chosen only a small
sample of the latter data, sensibly rounding up the measurements to fewer significant figures, but less sensibly
ignoring Du Buat’s distinction between vertical, inclined and horizontal tubes.

Du Buat had proposed his own empirical formulae that we need not discuss here, other than to say that they
involved logarithms; see [38, p. 131]. These agreed reasonably well with all his experimental data, but for Young’s
very narrow tubes the formulae fail. Young proposed his own formulae that gave results in satisfactory agreement
both with Du Buat’s data and with his very narrow tubes. His functions a(d) and c(d) are given by

4 I am grateful to Olivier Darrigol for drawing my attention to this paper, which I had initially overlooked.
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a = 10−7

(
430 + 75

d
− 1440

d + 12
− 180

d + 1
3

)
,

c = 10−7
(

900 d2

d2 + 1000
+ 1√

d

(
1050 + 12

d
+ 0.9

d2

))
,

in the appropriate French units (1 pouce or Paris inch is nearly 2.7 cm). Later, he states the equivalent formulae in
“English inches”. Young gives no indication of how he derived the numerical values in these rather strange formulae:
one can only suppose that he employed trial and error.

In order to compute the fluid velocity v connected with a given case, he adds to f “the height required for
producing the velocity, independently of friction”. He takes this to be v2/550 in preference to Du Buat’s v2/478:
both are modifications of Torricelli’s Law, h = v2/2g, for g is about 360 pouce/s2. The whole height of fall h of
the fluid is therefore equal to f + v2/550, and so

h =
(

al

d
+ 1

550

)
v2 + 2cl

d
v.

The positive root of this quadratic equation gives the velocity v corresponding to the fall h for a given pipe, and this
is what is compared with the velocities found in the various experiments for which d, l and h were known.

Though this is not pretty mathematics, it is effective in the sense that it gave good agreement with the experi-
mental data. Young conducted his own few experiments with thin tubes because of his interest in blood flow; then,
on finding that Du Buat’s empirical formulae were inapplicable to such thin tubes, he proceeded to devise his own.
However, this work seems to have had little later influence. French hydraulics of the period is well described by
Darrigol [36], but he does not mention Young’s work in this connection.

In fact, for very thin tubes, Young’s empirical formula does not reduce to the known exact result for laminar
Poiseuille flow in a pipe, as it should. Using the exact laminar formula for the volume flux (as given for instance
in [39, p. 180], the expected mean velocity v was calculated for the conditions of Young’s three experiments.
Considerable differences are found, though the flows in these thin tubes must have been laminar. In the same units,
the laminar formula yields v = 17.88 for the tube with diameter 1/42 pouces; but Young measured v as 14.4. And
the laminar formula gives v = 2.168 and 1.225 for the tubes with diameter 1/183 pouces; while Young measured the
much smaller v = 0.53 and 0.27. It seems likely that Young overestimated the diameters of his tubes, or that they
contained unnoticed constrictions: this suggestion would be consistent with the roughly constant ratios of velocities
in the two experiments with the thinnest tube.

In the same article, Young discusses the added resistance due to “flexure” in pipes and rivers, and he mentions
flow through elastic tubes, including blood flow. He then turns to waves in channels, noting that they, like sound,
grow in amplitude when propagating along convergent channels.

The final section of this paper [37, pp. 181–186] concerns “the Effect of a Constriction advancing through a
Canal”, and is perhaps the first attempt at a theory of the hydraulic jump or bore. Young envisages a vertical barrier
advancing with velocity v into a canal containing liquid that is initially at rest with depth a (Fig. 3). He supposes that
there is a region adjacent to the moving barrier where the liquid depth is raised to x , and that a “wave” propagates
away from the barrier with a velocity y, within which the depth changes from x to a. He more or less correctly
deduces the continuity condition that

a − x = −av

y − v
,

though he introduces an extraneous ∓ before v in the denominator (presumably to allow for a receding as well
as an advancing barrier) and the minus sign was erroneously omitted from the numerator. He then embarks on
an obscure calculation, supposing that the wave has the shape of a ramp with constant angle of 45 degrees, and
he thereby arrives at a formula for the wave-speed y. From this, he concludes that “y must be somewhat greater
than the velocity of a wave moving on the surface of the elevated fluid”. This is unconvincing, but Young has
unerringly identified an interesting physical problem that he lacked the expertise to solve. It was over 20 years later
that Jean-Baptiste Bélanger made further advances towards a satisfactory theory, following earlier observations
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Fig. 3 Definition sketch for Young’s hydraulic jump model

and unsuccessful theoretical attempts by Giorgio Bidone around 1820: see [36, pp. 224–225], [38, pp. 143–144],
[40]. Howell Peregrine has left his own mark on this topic both through his papers, such as [41], and his excellent
photographs; see e.g. [42, p. 116].

5 Young on tides

In 1823, Young wrote a long article on “Tides” for the six-volume Supplement to the Encyclopaedia Britannica,
edited by Macvey Napier [43]. In fact, for this Supplement, he wrote no fewer than 63 articles, large and small
and on a wide range of topics; see [1, Chap. 12]. Many appeared anonymously as Young was anxious not to be
thought neglectful of his medical practice. But he later allowed his authorship to be identified: his article on “Tides”
appeared under the initials “A.L.”, but he is identified elsewhere in the volume as the author of this and other articles.

Ten years previously, he had published “A Theory of Tides” in Nicholson’s Journal [44]. Much of this explored
an analogy with the motion of a pendulum subject to periodic forcing. In his own words:

The oscillations of the sea and of lakes, constituting the tides, are subject to laws exactly similar to those of
pendulums capable of performing vibrations in the same time, and suspended from points which are subjected
to compound regular vibrations of which the constituent periods are completed in half a lunar and half a solar
day [8, Vol. 2, p. 280].

He also remarked on the nonlinear steepening of waves and tidal bores, observing that:

The slight difference of the ascent and descent of the tide remarked by Laplace in the observations at Brest [in
Book IV of Mécanique céleste] may be explained by comparison with the form of a common wave, which,
where the water is shallow, is always steeper before. This circumstance arises from the greater velocity with
which the upper parts of the wave advance, where the differences of the depths become considerable … and it
is, perhaps, somewhat increased by the resistance of the bottom. Where the tide travels far in shallow channels,
its irregularity of inclination increases more and more: for instance, in the Severn, it assumes the appearance
of a steep bank [8, Vol. 2, p. 287].

As the gist of this article was repeated in his Elementary Illustrations and in his encyclopaedia article on Tides,
we henceforth discuss only the last. These are reprinted in volume 2 of Young’s Miscellaneous Works [8], and we
cite page references from the latter. According to Peacock, “Dr. Young was accustomed to regard his exposition of
this theory of tides as nearly the most successful of his physico-mathematical labours, only second in importance
to his researches on the theory of light” ([8, Vol. 2, p. 262, editor’s note]).

In the introduction to his encyclopaedia article, Young misleadingly wrote:

Laplace’s computation is however limited to the case of an imaginary ocean, of a certain variable depth,
assumed for the convenience of calculation, rather than for any other reason. Dr. Thomas Young has extended
Laplace’s mode of considering the phenomena to the more general case of an ocean covering a part only of the
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earth’s surface, and more or less irregular in its form; he has also attempted to comprehend in his calculations
the precise effects of hydraulic friction on the times and magnitudes of the tides [8, Vol. 2, p. 292].

He continued with a summary of observations of the actual tides around the world, presenting a large table of
times of high water at various stations, at “the full and change of the Moon”, recorded versus their longitude. This
clearly showed that “the line of contemporary tides is seldom in the exact direction of the meridian, as it is supposed
… in the theory of Newton and Laplace” [8, Vol. 2, pp. 294–297]. Indeed, “the bending of the great wave round
the continents of Africa and Europe seems to be very like the sort of refraction which takes place on every shelving
coast with respect to the common waves” [8, Vol. 2, p. 299]. This is an acute observation, though not backed up by
any calculations.

Young soon goes on to explore his analogy between the tides and forced pendulums. There, he incorporates
the influence of frictional effects, already explored in his “Hydraulic Investigations”. He first looks at free oscilla-
tions of a cycloidal pendulum with resistance proportional to the square of velocity. In modernised notation, small
oscillations satisfy the differential equation

d2s

dt2 + Bs − D

(
ds

dt

)2

= 0,

where B and D are positive constants, s is the angular or horizontal displacement and t is time. But this equation
holds only for the first swing, while ds/dt is negative. For the next swing, when ds/dt is positive, the sign of the
D term must be reversed. Young makes heavy weather of even the first swing: he obtains a first integral, and then
the first few terms of a series expansion for small D. He thereby finds, approximately, the time of the first swing.
Reversing the sign of D gives the time of the reverse swing and their sum yields the time of one complete oscillation.
His main finding is that the leading-order correction to the undamped period is an O(D2) quantity.

Resistance proportional to the velocity is a lot easier, as the motion is governed by the linear equation

d2s

dt2 + A
ds

dt
+ Bs = 0.

Competently enough, Young derives the general solution in two ways, first using complex exponentials, and then
without (the latter no doubt in deference to those who remained suspicious of complex numbers), [8, Vol. 2,
pp. 313–318].

With his analogy with tides in view, he then turns to forced oscillations, with periodic forcing of the form Msin
Ft where M and F are constants. He successfully solves the resulting equations first without resistance and then
with resistance proportional to the velocity. Then he shows how to deal with superpositions of forces of the form
M sin Ft + M ′ sin F ′t… All this is elementary nowadays, and need not be described further.

Even without resistance, Young’s pendulum analogy shed light on whether the tide is direct (i.e., in phase with
the periodic disturbing force) or inverted (i.e., out of phase by 180 degrees). This depends on whether the natural
period of unforced oscillations is less or greater than that of the disturbing force. Taking the tidal wavelength to
equal half the Earth’s circumference and the speed of waves to be c = (gh)1/2 where h is the depth, a critical depth
of about 13 miles (21 km) is found, the tides being direct for depths greater than this and inverted for less. Young
also drew conclusions about the influence of resistance on the amplitudes and phases of the tides, relative to those
of the perturbing forces, showing that resistance has a significant effect on the times of high water.

George Peacock was one who admired Young’s work on tides, “though more for its bold intuitions than for its
mathematical elegance”; see [1, p. 186]. In a footnote accompanying Young’s analysis of pendulums, Peacock wrote
that: “The methods adopted here make a bold and, in the circumstances being considered, a tolerably successful
inroad upon the solution of a problem of great difficulty by means which are apparently hardly sufficient for the
purpose” [8, Vol. 2, p. 275, editor’s note]. In 1841, George Biddell Airy, the Astronomer Royal, wrote his own
even more influential article “Tides and Waves” [34] for the Encyclopaedia Metropolitana without reading Young’s
work; but he later confessed to Peacock (who had been his tutor at Cambridge) “that in writing on any physical
subject it is but ordinary prudence to look at him first.” He further wrote:
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You ask my opinion of Dr. Young’s researches on tides; as far as they go they are capital … When I came to
look at him, I was surprised to find that he has clearly enough shown the difference of positive and negative
waves, and also the differences of free oscillations and forced oscillations: and that he has hinted at the cause
of the rapid rise of river tides as distinguished from their slower fall. All these were great points with me,
quite original to myself. There is one of mine, however, which he has not got, namely, the effect of friction in
producing an apparent retardation of the day of spring tides etc. [8, Vol. 2, p. 262, editor’s note].

In fact, Young did consider this last topic. He explicitly stated that “the spring tides will be retarded or accelerated
more than the neap tides; … and the highest tides will not be precisely at the syzygies, but may be before or after
them, according to circumstances.” But he admitted that the effect in some harbours “is observed in a greater degree
than can well be explained from the present state of the calculation” [44, p. 223].

Later, Horace Lamb, in his famous treatise Hydrodynamics [45], gave due acknowledgment to Young’s work
exploring the analogy between pendulums and tides, and Lord Rayleigh was another who commended this; see
[1, pp. 186–187]. On the other hand, Young’s friend and biographer Hudson Gurney perceptively wrote that:

There are some among the most distinguished of surviving English philosophers, who still think that his theory
of the Tides rests too exclusively on analogies, and that many of the elements of the computation are too out
of human reach to render the boldness of the original thought susceptible of being subjected to the severity of
mathematical deduction [2, p. 35].

6 Surface tension: Young versus Laplace

Young’s name is again coupled with that of Laplace in connection with the cohesion of fluids. The result

�p = γ

(
1

R1
+ 1

R2

)
,

denoting the change in pressure across a fluid interface with surface tension coefficient γ and principal radii of
curvature R1 and R2, is now familiar. This is often called the Laplace equation or Young–Laplace equation. Young’s
name is also associated with the condition

γLV cos λ = γSV − γSL

relating the three interfacial tensions γSV, γLV, γSL at the intersection of solid/air, liquid/air and solid/liquid
boundaries, where the solid is locally plane and λ is the contact angle between the liquid and solid. This is sometimes
called Young’s equation or the Young–Dupré equation [46]. It was Young who first proposed a constant contact
angle at such an intersection, and he discussed the values of this angle for various media. But he would surely
have regarded the so-called “Young–Dupré equation” as trivially obvious, for it simply expresses the equilibrium
of forces along the direction of the solid plane. In contrast, the attribution of the former result was one that Young
cared about, and which brought him into conflict with Laplace.

Young had first stated this result in 1805 in his “An Essay on the Cohesion of Fluids” [47] in the Philosophical
Transactions of the Royal Society of London, and it was derived by Laplace a year later, in a supplement to Book
10 in the fourth volume of his Mécanique céleste [21]. In the words of one modern authority, Young then reprinted
his paper “with additions and with some unwarranted criticisms of Laplace’s first paper in Lectures on Natural
Philosophy, 2, p. 649… and in Miscellaneous Works … 1, p. 418. Young obtained [the result] but characteristically
put it into words, not as an equation” [48, p. 22, note 20].

Young’s statement is as follows:

It is well known, and it results immediately from the composition of forces, that where a line is equally
extended, the force that it exerts, in a direction perpendicular to its own, is directly as its curvature; and the
same is true of a surface of simple curvature; but when the curvature is double, each curvature has its appro-
priate effect, and the joint force must be as the sum of the curvatures in any two perpendicular directions. For
this sum is equal, whatever pair of perpendicular directions may be employed [8, Vol. 1, p. 419].
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No mathematics whatsoever appeared in Young’s original article, but the second volume of his published
Lectures of 1807 [9] incorporated a mathematical insertion by Young that his later editor, George Peacock, deemed
“unduly concise and obscure”: this is repeated in [8, Vol. 2, pp. 420–422]. He had also added a new section [8, Vol. 2,
pp. 436–453] containing a hostile critique of Laplace’s 1806 essay, which gave “results nearly similar to those which
are contained in this paper.” Regarding some criticisms by Laplace of a passage in Isaac Newton’s Optics, Young
acidly remarked that:

Mr. Laplace’s superior skill in the most refined mathematical investigations might perhaps have enabled him to
make still more essential improvements, if it had been employed in some other subjects of natural philosophy;
but his explanation of these phenomena being exactly the same as that which I had already published, in an
essay not containing … any one mathematical symbol, it is obvious that the inaccuracy of Newton’s reasoning
did not depend upon any deficiency in his mathematical acquirements [8, Vol. 2, pp. 444–445].

He admits that:

… in this country, the cultivation of the higher branches of the mathematics, and the invention of new methods
of calculation, cannot be too much recommended to the generality of those who apply themselves to natural
philosophy; but it is equally true, on the other hand, that the first mathematicians on the continent have exerted
great ingenuity in involving the plainest truths of mechanics in the intricacies of algebraical formulas, and
in some instances have even lost sight of the real state of an investigation, by attending only to the symbols,
which they have employed in expressing its steps [8, Vol. 2, p. 453].

In contrast with Young’s statement, entirely in words, of a result that he regarded as “well known”, Laplace
gave its mathematical derivation [21] (supplement to Book 10, 1806) in a form that most would nowadays consider
necessary. But there is no denying Young’s brilliant insight. Arguably, the result is physically obvious for a curved
elastic line (and it must be remembered that Young had thought long and hard about bending beams), but less so
for surfaces of double curvature. And Young’s observation that the sum of the curvatures in any two perpendicular
directions is always equal to the sum of the two principal curvatures is certainly based on a mathematical calculation
(generally attributed to Euler), rather than physical insight.

In view of Young’s interest in water waves, it now seems surprising that he did not consider the influence of surface
tension on those of short wavelength. But neither did he consider gravity waves in deep water or in arbitrary depth,
for which the theory was first given by Poisson in 1818 (with an earlier “near miss” by Laplace in 1776): see [17].
The first to give the theory of capillary-gravity waves seems to have been William Thomson (Lord Kelvin), in a paper
of 1871 [49], with earlier observations of such waves by John Scott Russell in 1845: see Darrigol [36, pp. 59, 88].

But, for both Young and Laplace, the derivation (or assertion) of the “Young–Laplace formula” was not the
main point of their studies. Rather, they were trying to develop a general theory of cohesion of fluids, based on
speculations about the nature of short-range inter-particle forces acting throughout the fluid. These attempts are
interesting as early approaches to molecular theories of matter, but only the “Young–Laplace formula” that results
from these theories is central to the fluid mechanics of media assumed to be continuous. The assumptions of Young
and Laplace differed: whereas Young considered fluid particles to be held in equilibrium by a balance of short-
range attractive (or “contractile”) and repulsive forces, with the former acting over smaller distances than the latter,
Laplace considered only attractive forces. But, in both cases, the net effect was that the surface behaved as if it
possessed elasticity, so giving the “Young–Laplace formula”. A full history of this topic is given by Bikerman [50]
and Rowlinson [51].

As just mentioned, Young returned to the subject of “cohesion” in his Royal Institution lectures [9] (Lecture L),
drawing much of the material from his 1805 paper [47] but surprisingly omitting any mention, even in words, of the
“Young–Laplace formula”. Instead, he refers to his earlier Lecture XIII “On passive strength and friction”, which
is a masterly account of elasticity and the strength of materials: though as always expressed without any formulae,
he emphasises the connection between applied forces and induced curvature. Less creditably, in Lecture LX “On
the history of terrestrial physics”, Young criticises Laplace’s memoir on cohesion and capillary tubes, alleging that:
“as far as he has pursued the subject, he has precisely confirmed the most obvious of my conclusions; although
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his mode of calculation appears to be by no means unexceptionable, as it does not include the consideration of the
effects of repulsion” [10, Vol. 1, p. 589]. Also, as already noted, the second volume of his Lectures contained the
revised reissue of his 1805 paper, with further harsh words about Laplace. Though not in Kelland’s second edition
[10], this is reproduced in Young’s Miscellaneous Papers [8].

Young returned to the topic in a thirty-page article on “Cohesion”, written in 1816 for the Supplement to the
Encyclopaedia Britannica [52], arguing for the superiority of his model based on both repulsive and attractive forces,
and repeating his unconvincing attempt at a mathematical derivation. He also states a version of the “Young–Dupré
equation” in which he (wrongly) conjectures that the contractile forces are related to the differences in densities
of the adjacent media [8, Vol. 1, p. 464]. Then he calculates the forms of several surfaces of simple and double
curvature, in part by employing series expansions: for these, he claims good agreement with some experiments
conducted by others. He also gave a brief account of his theory in Appendix A of his Elementary Illustrations [20,
pp. 329–337], with no mention of Laplace.

Volume 4 (1820) of the same Supplement contains another article on a closely related topic, written by James
Ivory and entitled “Fluids, Elevation of”. (This immediately follows another of Young’s articles, on “Fluents”, a
lengthy compilation of integrals of functions culled mainly from a German work by M. Hirsch.) In Ivory’s view,

The formula of Laplace must be considered as a great step made in this branch of natural philosophy, not
only because it ascertains the connection between the pressure and the curvature, in which it agrees with the
hypothesis of Segner and Dr. Young, but also because it brings into view the forces K and H [in Laplace’s
version of the “Young–Laplace formula”], and draws attention to the relation they have to one another, and
to the primitive attraction of the particles [53, p. 326].

Young was most displeased to see his result described as a mere hypothesis, and credit for the theory given solely
to Laplace: the resulting controversy is briefly discussed in [23, pp. 231–232].

Finally, one should mention the influence of this work on the later evolution of molecular physics. The kinetic
theory of gases and the theory of capillarity both indicated how a molecular theory of matter might be constructed,
and James Clerk Maxwell, for one, studied the latter as well as the former: for these later developments, see [51,54].
It was Clerk Maxwell who wrote a classic article on surface tension, with full historical summary, for the ninth
edition of Encyclopedia Britannica, and it was Lord Rayleigh, another admirer of Young, who revised it for the
tenth edition.

7 Discussion

Despite some valid criticisms, Thomas Young’s high reputation as a gifted polymath who made fundamental
contributions to science, medicine and the humanities, is unassailable. His deep physical insight and inventive
speculations particularly enriched several areas of physics. Though his contributions to fluid mechanics were less
spectacular than those in some other areas, his work on waves and tides, and especially his fruitful analogies with the
motion of pendulums, had a lasting impact on later scholars. Similarly, his pioneering insights on surface tension,
though overtaken by Laplace’s analytical demonstration, well deserve the recognition that they have received. In
contrast, his work on the resistance of flow through tubes and pipes is long forgotten, and has flaws noted above.
But he should be commended for making the first, though incomplete, attempt at a theory of the hydraulic jump or
bore, and for his observations of jets of air that clearly show transition to turbulence.

Young was happiest, and best, in the role of a speculative natural philosopher. Though a competent experimenter,
he admitted a reluctance to spend the time necessary to make a first-class experiment. As a mathematician, he was
competent but not brilliant, adhering when he could to outdated geometrical modes of thought, and impatient with
what he saw as excessive proliferation of symbols in analysis. In some of his writings, he took this aversion to
ideological excess, publishing his Royal Institution Lectures and several papers without using a single formula or
equation, although their use would have clarified his many elaborate circumlocutions. But there too his sound phys-
ical insights shine through the verbiage. It is a considerable irony that he chose to expound Laplace’s Mécanique
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céleste, as Laplace was a diametrically opposed ideologue, so convinced of the primacy of analysis that he avoided
all diagrams and geometrical arguments.

It is hard to identify the major influences on Young’s scientific views. Essentially, he was a voracious reader
who educated himself, rather than one who was instructed by others. The authors of many books and papers were
his teachers, and the Catalogue published in [9, Vol. 2] shows the incredible breadth and depth of his reading. But
one whose influence he expressly acknowledged was John Robison of Edinburgh. In the Preface to his Syllabus
[11], he mentions “the extensive use that has been made of the valuable articles contributed by Professor Robison
to the Encyclopaedia Britannica”, and Robison is one of the most frequently cited authors in his Lectures [9]. It is
worth noting that he almost certainly met Robison while studying in Edinburgh, and that Robison was another who
expounded physical subjects with minimal use of mathematics. It is also noteworthy that he spent time in Göttingen
as a student, when he travelled around the German states; that he visited Paris for two weeks in 1802, when he
attended discussions at the National Institute;5 and that he finally got to Italy in 1821, after the Napoleonic wars
that had curtailed travel in Europe; see [1].

It is equally hard to identify later scholars who were directly influenced by Young. His lectures at the Royal
Institution would have won few converts; but his set-piece lectures to the Royal Society, on optics and blood flow,
must have commanded attention, and were later published in the Philosophical Transactions. In due course, the
wave theory of light became the orthodox view, espoused by G.B. Airy and later by G.G. Stokes. But, surprisingly,
Airy had not read Young’s long encyclopaedia article on Tides when he prepared his own. Young’s many published
papers were no doubt read, and there were polemical exchanges with rivals who held differing views. His involve-
ment with the Royal Society, as Foreign Secretary and as a member of other committees, certainly brought him
into contact with most of the major British—and some foreign—scholars of his day. Yet there is no-one who can
be identified as a disciple of Young, and in his lifetime he seems to have been a rather remote, though respected,
figure.

Where applied mathematics is concerned, Young’s reputation is at best equivocal, and he is a frustrating author
to read. He had a keen eye for identifying interesting problems, he made many sound speculations, and he explored
instructive analogies; but his mathematical skill was often inadequate to accomplish his aims, and his mathematical
style is even more off-putting to modern eyes than to those of his contemporaries. Commenting on Young’s seminal
“Essay on the Cohesion of Fluids” [45], his friend Hudson Gurney wrote that:

The mathematical reasoning, for want of mathematical symbols, was not understood, even by tolerable
mathematicians; from a dislike of the affectation of algebraic formality, which he had observed in some
foreign authors, he was led into something like an affectation of simplicity, which was equally inconvenient
to the scientific reader [2, p. 54].
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